LETTRE D'INFORMATION FEVRIER 2016

POUR UNE AGRICULTURE TRES PRODUCTIVE ET ECOLOGIQUE AVEC LE BIOCHAR

Le Biochar (une sorte de carbone écologique) a été appelé « La troisième révolution verte ». Un charbon végétal sous forme de particules fines (moins de 2 mm) et combiné avec des engrais organiques, le biochar peut être introduit dans une grande variété de sols et de climats.

Notre expérience sous les différents climats a montré que l'introduction d'environ 10 tonnes de biochar par hectare peut **augmenter la productivité des cultures entre 50% et 200%.** Cette seule application crée et maintient une fertilité de longue durée, augmente la séquestration de carbone et lutte contre le changement climatique. Le biochar est relativement plus efficace sur les sols pauvres.

- Stimulation de l'activité biologique des sols (+40% de champignons de mycorhize)
- Amélioration de la rétention des nutriments (+50% d'échanges cationiques)
- Augmentation de la capacité de rétention d'eau dans les sols (jusqu'à +18%)
- Accroissement du pH des sols acides (1 point de plus)
- Augmentation de la matière organique dans le sol

Ajout de biochar dans le sable au sud de l'Algérie

5 semaines après un Super Potager au biochar

Pro-Natura a gagné le 1er Prix d'innovation technologique de la Fondation Altran

inutilisés ou d'autres types de biomasse renouvelable non valorisable d'une autre façon, pour les carboniser par pyrolyse en continu. Par exemple les pailles de blé, de riz, tiges de coton, de mil, cannes de maïs, balle de riz, parches de café, bambous, grignons d'olives, palmes séchées, peuvent êtres utilisés pour fabriquer le biochar. Le bois peut également être carbonisé sous toutes ses formes, y compris la sciure avec un rendement environ 3 fois supérieur aux procédés de carbonisation classiques.

Cette innovation consiste à récupérer des résidus agricoles

CarboChar-1

Chaque machine CarboChar-3 permet de produire environ 5 tonnes de biochar par jour.

Pro-Natura International

Cette technologie innovante est basée sur l'utilisation d'une cornue chauffée à 550°C au travers de laquelle s'écoule la biomasse en l'absence d'oxygène. La température de la cornue est maintenue constante par la combustion des gaz de pyrolyse qui sont recyclés et brûlés dans une chambre de post combustion, évitant ainsi l'émission de gaz à effet de serre (GES). Une des originalités du procédé est que, une fois la machine préchauffée, le processus produit sa propre énergie. L'alimentation de la biomasse, obtenue par un petit moteur électrique de faible consommation, constitue finalement la seule demande d'énergie externe du système. Ce processus est donc pratiquement autonome en terme d'énergie et son rendement (poids de charbon vert produit par rapport au poids de la biomasse à 15% d'humidité) atteint 30% à 45% suivant le type de biomasse. En plus des avantages du procédé de carbonisation en cornue, le coût de fonctionnement du réacteur est réduit par la production en continu.

Ce procédé permet aussi d'obtenir un rendement énergétique optimum, en ce qui concerne la carbonisation en cornue, grâce à l'excellente maîtrise de la combustion des gaz de pyrolyse assurant l'autonomie de fonctionnement du réacteur.

Biochar en tant que moyen pour lutter contre les changements climatiques

En croissant les plantes absorbent du CO₂, produisant ainsi de la biomasse qui contient du carbone. Plutôt que de laisser les végétaux inutilisés se décomposer en émettant du CO₂, la pyrolyse transforme environ la moitié du carbone dans une forme stable et inactive. La photosynthèse absorbe le CO₂ de l'atmosphère, le biochar stocke le carbone sous une forme solide et bénéfique. Le biochar réduit aussi les émissions d'autres gaz à effet de serre, incluant le méthane et l'oxyde nitreux. Une étude récente estime que 12% des émissions de gaz à effet de serre émis par l'activité humaine pourraient être compensés par l'usage du biochar⁷.

La longévité du biochar dans le sol peut atteindre plusieurs milliers d'années, ce qui permet de les considérer comme de véritables puits de carbone (Woof D, Amonette J, Street-Perrot A, Lehmann J, Joseph S, Sustainable biochar to mitigate global climate change. Nature Communications 2010).

Au Belize, les cacaoyers avec biochar à gauche sont productifs bien avant ceux non traités à droite – les deux ont 3 ans d'âge

Résumé de publications scientifiques majeures montrant les effets du biochar sur les principales cultures tropicales

Type de culture	Auteurs	Localisation	Type de sols	Quantité de biochar (t/ha)	Augmentation de rendement (%)
Riz	Asai et al.	Houay-Khot, Nord du Laos	upland	8	70%
Riz	Steiner et al.	Manuas, Brésil	xanthic ferralsol / laterite	11	73%
Riz	Masulili et al.	Sungai Kakap, Indonesia	acid sulphate soil	10	93%
Riz	Zaitun et al.	Empretring, Indonesia	-	10	57%
Cane à sucre	Chen et al.	Okinawa, Japan	shimajiri maji (clay)	7,2	78%
Tomate	Effah et al.	Kade, Ghana	forest ochrosol	7	177%
Cotton	Reddy	Midjil Mandal, Andrha Pradesh, India	alkaline	3,75	100%
Choux	Carter et al.	Siam Reap, Cambodia	sandy acidic	100	750%
Maïs	Major et al.	Llanos Orientales, Colombia	savanna oxisol	8	71%
Maïs	Major et al.	Llanos Orientales, Colombia	savanna oxisol	20	140%
Maïs	Kimetu et al.	Vihiga, western Kenya	highly degraded ultisol	6	71%
Arachide	Islami et al.	Malang, Indonesia	clay loam	15	54%
Niébé	Tagoe et al.	Gifu, Japan	sandy loam	-	146%
Manioc	Islami et al.	Malang, Indonesie	clay loam	15	32%
Oignon	Pro-Natura	Sénégal	-	10	50%

Résumé de publications scientifiques majeures montrant les effets du biochar sur les principales cultures tempérées

Type de culture	Auteurs	Localisation	Type de sols	Quantité de biochar (t/ha)	Augmentation de rendement (%)
Riz	Lugato et al.	Nord d'Italie	aguic hapludalf	40	36%
Riz	Zhang et al.	Shenyang, Chine	loam sableux	30	40%
Maïs	Uzoma et al.	Tottori, Japon	sol sableux	15	150%
Maïs	Peng et al.	Yingtan, Chine	ultisol	2,4	64%
Soja	Tagoe et al.	Gifu, Japon	-	4	43%
Blé	Van Zwietan	NSW, Australie	ferralsol	15	170%
Blé	Vaccari et al.	Postoia, Italy	loam limoneux	30	33%
Colza	Pervej-Ahmed et al.	Saskatchewan, Canada	loam brun	1	20%
Orge	Gathorne- Hardy et al.	Angleterre	sol léger	20	43%
Choux	Jia et al.	Nanjing, Chine	fimi-orthic anthrosol	30	96%
Radis	Chan et al.	NSW, Australie	chromosol	10	42%
Poivron	Graber et al.	Israel	mélange sans sol	8	79%